Strange Attractors Characterizing the Osmotic Instability
نویسنده
چکیده
In the present paper a simple dynamical model for computing the osmotically driven fluid flow in a variety of complex, non equilibrium situations is derived from first principles. Using the Oberbeck-Boussinesq approximation, the basic equations describing the process of forward osmosis have been obtained. It has been shown that these equations are very similar to the ones used to model the free Rayleigh-Benard convection. The difference is that while in the case of thermal convection the volume expansion is driven by the coefficient of thermal expansion, the key role for the osmotic instability is played by the coefficient of isothermal compressibility β. In addition, it has been shown that the osmotic process represents a propagation of standing waves with time-dependent amplitudes and phase velocity, which equals the current velocity of the solvent passing through the semi-permeable membrane. The evolution of the amplitudes of the osmotic waves is exactly following the dynamics of a strange attractor of Lorenz type with corresponding control parameters.
منابع مشابه
Characterizing strange nonchaotic attractors.
Strange nonchaotic attractors typically appear in quasiperiodically driven nonlinear systems. Two methods of their characterization are proposed. The first one is based on the bifurcation analysis of the systems, resulting from periodic approximations of the quasiperiodic forcing. Second, we propose to characterize their strangeness by calculating a phase sensitivity exponent, that measures the...
متن کاملDissipative Homoclinic Loops of 2-dimensional Maps and Strange Attractors with 1 Direction of Instability
We prove that when subjected to periodic forcing of the form pμ,ρ,ω(t) = μ(ρh(x, y) + sin(ωt)), certain 2-dimensional vector fields with dissipative homoclinic loops admit strange attractors with SRB measures for a set of forcing parameters (μ, ρ, ω) of positive Lebesgue measure. The proof extends ideas of Afraimovich and Shilnikov [1] and applies the recent theory of rank 1 maps developed by W...
متن کاملThe creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations
We propose a general mechanism by which strange non-chaotic attractors (SNA) can be created during the collision of invariant tori in quasiperiodically forced systems, and then describe rigorously how this mechanism is implemented in certain parameter families of quasiperiodically forced interval maps. In these families a stable and an unstable invariant circle undergo a saddle-node bifurcation...
متن کاملTwo-parameter families of strange attractors.
Periodically driven two-dimensional nonlinear oscillators can generate strange attractors that are periodic. These attractors are mapped in a locally 1-1 way to entire families of strange attractors that are indexed by a pair of relatively prime integers (n(1),n(2)), with n(1)>/=1. The integers are introduced by imposing periodic boundary conditions on the entire strange attractor rather than i...
متن کاملBlowout Bifurcation Route to Strange Nonchaotic Attractors.
Strange nonchaotic attractors are attractors that are geometrically strange, but have nonpositive Lyapunov exponents. We show that for dynamical systems with an invariant subspace in which there is a quasiperiodic torus, the loss of the transverse stability of the torus can lead to the birth of a strange nonchaotic attractor. A physical phenomenon accompanying this route to strange nonchaotic a...
متن کامل